

Northwest and Alaska Fisheries Center

National Marine Fisheries Service

NOAA LISD SEATTL

U.S. DEPARTMENT OF COMMERCE

NWAFC PROCESSED REPORT 84-11

Ichthyoplankton off Washington, Oregon and Northern California May–June 1981

May 1984

0 SH 11 ,A2 N65 NO.84-11

0

0

0

0

0

0

0

0

0

This report does not constitute a publication and is for information only. All data herein are to be considered provisional.

Ichthyoplankton off Washington, Oregon, and Northern California

С

С

 \bigcirc

С

С

Э

С

С

С

С

С

£.

May-June 1981

By

Jay B. Clark

NOAA Library, E/Al218 7609 Sand Point Way N.E. Bin C-15700 Seattle, WA 98115

Resource Assessment and Conservation Engineering Northwest and Alaska Fisheries Center National Marine Fisheries Service National Oceanic and Atmospheric Administration 2725 Montlake Boulevard East Seattle, Washington 98112

May 1984

Ichthyoplankton off Washington, Oregon, and Northern California May-June 1981

С

О

С

С

С

Э

С

С

С

С

C

By Jay B. Clark

INTRODUCTION

This report describes the third in a series of cooperative U.S.-U.S.S.R. ichthyoplankton surveys conducted off the U.S. west coast from $48^{\circ}-40^{\circ}N$. Similar reports, based on previous cruises since April-May 1980, have already been produced (Kendall and Clark 1982a, 1982b). These surveys are designed to determine seasonal and spatial distribution of ichthyoplankton as background information for more detailed studies on early life history of fishes of the It is planned to conduct two such surveys each year, at different times area. of the year, so that after several years the complete annual cycle of fish egg and larval occurrence will be documented. These will be the first large-scale ichthyoplankton surveys of the area to sample all seasons. Results from these surveys eventually will be compared to those of the CalCOFI program off California and Baja California to the south, and to several smaller-scale surveys conducted previously off Washington and Oregon. In the meantime, we plan to present a data report such as this for each cruise, as soon as feasible.

METHODS AND MATERIALS

A grid of 123 stations laid out off the Washington, Oregon, and northern California coasts extended from 3 miles (5.6 km) to 200 miles (370 km) from shore (Figure 1). Stations were more closely spaced near shore than off shore. The Soviet Research vessel POSEYDON with Dr. Igor Zhuteyev serving as chief scientist occupied these stations basically from north to south from 9 May to 2 June 1981. At each station hydrographic casts at standard depths (0, 10, 20, 30, 50, 75, 100, 150, 200, 250, 300, 400, 500, 600 m) were made as water depth permitted. Temperature, salinity, oxygen, phosphate, and silicate determinations were made aboard ship with these samples. Results of these measurements will be reported elsewhere. Paired neuston tows using 0.3 m high by 0.5 m wide Sameoto samplers (Sameoto and Jaroszynski 1969) with 0.505 mm mesh nets were made at 2.0 knots (1.03 m/sec) for 10 min at each station. A standard MARMAP bongo tow (Smith and Richardson 1977) with 60 cm, 0.505 mm mesh nets was made with a maximum of 300 m of wire out at each station. Flowmeters in the mouths of the nets were used to determine the volume of water filtered by each net. The Soviets retained one of the paired neuston and bongo samples, while the Americans retained the other. The American samples were processed by the Polish Plankton Sorting Center in Szczecin, Poland, where displacement plankton volumes were determined (for bongo samples) and all fish eggs and larvae removed. The fish eggs were counted; the larvae were identified, counted and measured. Fish eggs were later identified and counted by Ann C. Matarese at NWAFC. Identifications were made to the lowest taxonomic level possible, and in some cases "types" of unidentified eggs or

larvae were established, in hopes that with further study their identity could be established. Beverly Vinter at NWAFC checked larval identifications. Counts of fish eggs and larvae in the samples were converted to numbers per 10 m^2 of surface area for the bongo samples and numbers per 1,000 m³ for the neuston samples. The log of the number of eggs or larvae in the survey area is based on the Sette and Ahlstrom census as used by Richardson (1981).

RESULTS

The station pattern (Figure 1) was occupied as planned (the Soviets added stations south of 40°N which they processed). Data associated with these stations are listed in Table 1. A summary of the catches of fish eggs and larvae are presented in Tables 2 and 3. Totals of 27 taxa of eggs and 58 taxa of larvae were found. Figures 2-5 illustrate the rank abundances of egg and larval catches in bongo and neuston tows for the cruise using several measures of abundance. Figures 6-25 show the geographic distribution, abundance at each station, and length frequencies of larvae of the more abundant taxa. Results of recurrent group analysis of eggs and larvae from neuston samples are shown in Figure 27, and from bongo samples in Figure 28.

Relative Abundances

The rank order of abundance among the taxa depends on the measure of abundance examined. Four measures of abundance for each net were used: total

3

С

С

С

О

С

Э

С

С

С

Э

C

numbers caught, percent occurrence, log of number in survey area, and mean number per 1,000 m^3 (for neuston) and mean number per 10 m^2 (for bongo).

In the neuston net, egg catches were dominated by <u>Sebastolobus</u> sp. in three of the abundance measurements. Bothidae, <u>Icichthys lockingtoni</u>, <u>Trachipterus altivelis</u>, and <u>Microstomus pacificus</u> eggs were also abundant, depending on what measurement used (Figure 2). In the bongo net, eggs of Myctophidae were most abundant according to three measurements, and <u>Lyopsetta</u> exilis according to the other one (Figure 4).

Larval catches in the neuston net were dominated by <u>Stenobrachius</u> <u>leucopsarus</u> according to two measurements, and by <u>Cololabis saira</u> and <u>Diaphus</u> <u>theta</u> based on the others (Figure 3). <u>Sebastes</u> spp. and <u>Scorpaenichthys</u> <u>marmoratus</u> larvae were also abundant in the neuston community. In the bongo net, <u>Stenobrachius leucopsarus</u> dominated all four abundance measurements. Also abundant were <u>Diaphus theta</u>, <u>Sebastes</u> spp. and <u>Bathylagus ochotensis</u> (Figure 5).

Distributions

While this is not intended to be a definitive report on these data, certain outstanding features of distribution of the more abundant taxa will be mentioned.

Bathylagidae (Figure 6) - Eggs of unidientified deep-sea smelt were widely distributed in the bongo tows, but in rather low abundance. The main concentrations were found in the southern half of the survey area, just off the continental shelf.

<u>Bathylagus ochotensis</u> (Figure 7) - Larvae of this deep-sea smelt were widely distributed off shore in bongo catches, occurring at 48% of the stations sampled. Their lengths ranged from 5.0-25.2 ($\bar{x}=9.63$) mm SL. Similar results in distribution and lengths were found in April-May 1980 (Kendall and Clark 1982a).

Myctophidae (Figure 8) - Unidentified eggs of lanternfishes were collected in bongo tows in offshore waters mainly in the southern two-thirds of the survey area. Similarities in distribution were also found in April-May (Kendall and Clark 1982a). Lanternfish have small eggs (0.75-0.85 mm diameter) and appear fragile, so more eggs may have been caught but ruptured or squeezed through the 0.505 mm mesh of the bongo net.

<u>Diaphus theta</u> (Figure 9) - Larvae of this myctophid were widely distributed in bongo catches from southern Washington to waters southward. They ranged from 2.5-9.0 (\bar{x} =5.01) mm SL.

<u>Stenobrachius leucopsarus</u> (Figures 10 and 11) - These lanternfish larvae dominated the catch in the bongo nets in numbers caught and in occurrence (71%). They were abundant throughout the survey area and ranged in size from 2.7-50.0 ($\bar{x}=5.8$) mm SL. The size and abundance of larvae was consistent with the results found in April-May 1980 (Kendall and Clark 1982a).

<u>Cololabis saira</u> (Figure 12) - Saury larvae were found in neuston catches primarily off the coast of California, as was the case in April-May 1980 (Kendall and Clark 1982a). Their lengths ranged from 6.0 to 33.5 (\bar{x} =16.89) mm SL.

5

С

 \bigcirc

С

 \odot

 \odot

О

 \odot

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

<u>Trachipterus altivelis</u> (Figure 13) - Eggs of king-of-the-salmon were found widely distributed in the neuston catches throughout the survey area, occurring at 40% of the stations occupied.

<u>Sebastes</u> spp. (Figures 14 and 15) - Rockfish larvae were widely distributed in the bongo catches, mainly in the continental shelf waters. No attempt was made to identify the species caught. In the neuston catches larvae were found sporadically throughout the survey area in both near and offshore locations. The rockfish larvae in the neuston net were larger than in the bongo net (\bar{x} neuston = 10.1, \bar{x} bongo = 4.9 mm SL). Similar results were noticed in April-May 1980 (Kendall and Clark 1982a) and August 1980 (Kendall and Clark 1982b).

<u>Sebastolobus</u> sp. (Figure 16) - Eggs of the thornyhead dominated three of the four abundance measurements for neuston catches, but occurred at only 4% of the stations occupied. The eggs were concentrated at the nearshore stations near Coos Bay, Oregon.

<u>Anoplopoma fimbria</u> (Figure 17) - Sablefish larvae in the neuston catches were found in small concentrations in the northern one-third of the survey area. They ranged from 10.5-36.5 (\bar{x} =23.4) mm SL.

<u>Scorpaenichthys marmoratus</u> (Figure 18) - Cabezon larvae were found at nearshore stations in neuston catches, mainly off of the Washington coast. They ranged from 4.9-12.0 (x=6.35) mm SL.

<u>Icichthys lockingtoni</u> (Figure 19) - Eggs of medusafish were widely distributed in the neuston catches. Medusafish eggs have also been collected in August 1980, indicating an extensive spawning season (Kendall and Clark 1982b).

Bothidae (Figures 20 and 21) - Unidentified eggs of lefteye flounders were found near shore in the northern half of the survey area in bongo catches, and throughout the whole survey area in neuston catches.

Pleuronectidae (Figure 22) - Unidentified eggs of righteye flounders were found near shore in the northern half of the survey area in the bongo catches.

<u>Glyptocephalus zachirus</u> (Figure 23) - Eggs of rex sole were found near shore mainly from the Columbia River to the southern end of the survey area.

Lyopsetta exilis (Figures 24 and 25) - Eggs and larvae of slender sole were found in bongo catches throughout the survey area at the near shore stations. Larvae were concentrated off Oregon as found in April-May 1980 (Kendall and Clark 1982a), while the catches off of Washington were patchy. The larvae ranged in length from 4.4-22.2 ($\bar{x}=9.3$) mm SL. The larvae were frequently part of the offshore assemblage off Oregon in March-April, as reported by Richardson et al. (1980).

<u>Microstomus pacificus</u> (Figure 26) - Dover sole eggs were collected in neuston tows all along the coast, the results similar as in April-May 1980 (Kendall and Clark 1982a).

Community Structure

Regroup analysis of the neuston data at an affinity level of 0.4 revealed only one group whose members had more than five occurrences (Figure 27). This group was composed of <u>Icichthys lockingtoni</u> and <u>Trachipterus altivelis</u>. <u>Tarletonbeania crenularis</u> and <u>Cololabis saira</u> had affinity levels greater than 0.40 with Trachipterus altivelis.

7

С

С

С

С

Э

Э

Э.

С

С

С

С

In bongo catches a complex pattern of interrelations between larvae of two groups of mesopelagic species was seen. Also a number of species had affinities with members of one or two of these groups, but not with all members. Another group of three taxa (Lyopsetta exilis, Sebastes spp. and <u>Glyptocephalus zachirus</u>), are mainly demersal as adults, but have an extended larval life and occur beyond the continental slope. A fourth group consisted of three taxa of flatfish eggs that are mainly found over the continental shelf.

ACKNOWLEDGMENTS

We wish to thank the Soviet scientists, officers, and crew aboard the Soviet research vessel POSEYDON for their cooperative help at sea. Also, we wish to thank: Elizabeth Dunning, and Susan Simon who served as American scientists aboard the cruise; Jim Peacock, Carol Hastings, and the staff in graphics; Darlene Blythe and her staff for word processing; and Ethel Zweifel and her staff for printing and binding.

С

С

С

С

 \bigcirc

С

О

О

С

С

 \bigcirc

ł

ć

(

(

ł

LITERATURE CITED

- Kendall, A. W. Jr., and J. B. Clark. 1982a. Ichthyoplankton off Washington, Oregon, and Northern California April-May 1980. NWAFC Proc. Rep. 82-11, 44 p.
- Kendall, A. W. Jr., and J. B. Clark. 1982b. Ichthyoplankton off Washington, Oregon, and Northern California August 1980. NWAFC Proc. Rep. 82-12, 43 p.
- Richardson, S. L. 1981. Spawning biomass and early life of northern anchovy, <u>Engraulis mordax</u>, in the northern subpopulation off Oregon and Washington. Fish. Bull., U.S. 78:855-876.
- Richardson, S. L., J. L. LaRoche, and M. D. Richardson. 1980. Larval fish assemblages and associations in the northeast Pacific Ocean along the Oregon coast, winter-spring 1972-1975. Estuar. and Coast. Mar. Sci. 11:671-699.
- Sameoto, D. D., and L. O. Jaroszynski. 1969. Otter surface sampler: a new neuston net. J. Fish. Res. Board Canada. 25:2240-2244.

Smith, P. E., and S. L. Richardson (editors). 1977. Standard techniques for pelagic fish egg and larvae surveys. FAO Fish. Tech. Pap. 175, 100 p.

0

·

.

List of Tables

- Table 1.--Data associated with bongo and neuston tows during cruise 1PO81, May-June 1981.
- Table 2.--Fish eggs collected in bongo and neuston tows during cruise 1P081, May-June 1981.
- Table 3.--Fish larvae collected in bongo and neuston tows during cruise 1P081, May-June 1981.

С

С

Э

С

С

Э

0

С

С

С

С

;

i.

Figure 1.--Station locations for cruise 1P081, May-June 1981.

- Figure 2.--Rank abundance of eggs caught in neuston tows during cruise 1P081, May-June 1981.
- Figure 3.--Rank abundance of larvae caught in neuston tows during cruise 1P081, May-June 1981.
- Figure 4.--Rank abundance of eggs caught in bongo tows during cruise 1PO81, May-June 1981.
- Figure 5.--Rank abundance of larvae caught in bongo tows during cruise 1P081, May-June 1981.
- Figure 6.--Distribution of eggs of Bathylagidae from bongo tows during cruise 1P081, May-June 1981. Abundance expressed as numbers per 10 m².
- Figure 7.--Distribution and lengths of <u>Bathylagus</u> ochotensis from bongo tows during cruise 1P081, May-June 1981. Abundance expressed as numbers per 10 m².
- Figure 8.--Distribution of eggs of Myctophidae from bongo tows during cruise 1P081, May-June 1981. Abundance expressed as numbers per 10 m².
- Figure 9.--Distribution and lengths of <u>Diaphus theta</u> from bongo tows during cruise 1P081, May-June 1981. Abundance expressed as numbers per 10 m².
- Figure 10.--Distribution and lengths of <u>Stenobrachius</u> <u>leucopsarus</u> from neuston tows during cruise <u>lP081</u>, May-June 1981. Abundance expressed as numbers per 1,000 m³.
- Figure 11.--Distribution and lengths of <u>Stenobrachius</u> <u>leucopsarus</u> from bongo tows during cruise 1P081, May-June 1981. Abundance expressed as numbers per 10 m².
- Figure 12.--Distribution and lengths of <u>Cololabis saira</u> from neuston tows during cruise 1P081, May-June 1981. Abundance expressed as numbers per 1,000 m³.
- Figure 13.--Distribution of eggs of <u>Trachipterus</u> <u>altivelis</u> from neuston tows during cruise 1P081, May-June 1981. Abundance expressed as numbers per 1,000 m³.
- Figure 14.--Distribution and lengths of <u>Sebastes</u> sp. from neuston tows during cruise 1P081, May-June 1981. Abundance expressed as numbers per 1,000 m³.

- Figure 15.--Distribution and lengths of <u>Sebastes</u> sp. from bongo tows during cruise 1PO81, May-June 1981. Abundance expressed as numbers per 10 m².
- Figure 16.--Distribution of eggs of <u>Sebastolobus</u> sp. from neuston tows during cruise 19081, May-June 1981. Abundance expressed as numbers per 1,000 m³.

t

4

(

Ł

- Figure 17.--Distribution and lengths of <u>Anoplopoma fimbria</u> from neuston tows during cruise 1PO81, May-June 1981. Abundance expressed as numbers per 1,000 m³.
- Figure 18.--Distribution and lengths of <u>Scorpaenichthys marmoratus</u> from neuston tows during cruise 1PO81, May-June 1981. Abundance expressed as numbers per 1,000 m³.
- Figure 19.--Distribution of eggs of <u>Icichthys lockingtoni</u> from neuston tows during cruise 1PO81, May-June 1981. Abundance expressed as numbers per 1,000 m³.
- Figure 20.--Distribution of eggs of Bothidae from neuston tows during cruise 1PO81, May-June 1981. Abundance expressed as numbers per 1,000 m³.
- Figure 21.--Distribution of eggs of Bothidae from bongo tows during cruise 1PO81, May-June 1981. Abundance expressed as numbers per 10 m².
- Figure 22.--Distribution of eggs of Pleuronectidae from bongo tows during cruise 1PO81, May-June 1981. Abundance expressed as numbers per 10 m².
- Figure 23.--Distribution of eggs of <u>Glyptocephalus zachirus</u> from bongo tows during cruise 1PO81, May-June 1981. Abundance expressed as numbers per 10 m².
- Figure 24.--Distribution of eggs of <u>Lyopsetta exilis</u> from bongo tows during cruise 1PO81, May-June 1981. Abundance expressed as numbers per 10 m².
- Figure 25.--Distribution and lengths of Lyopsetta exilis from bongo tows during cruise 1PO81, May-June 1981. Abundance expressed as numbers per 10 m².
- Figure 26.--Distribution of eggs of <u>Microstomus pacificus</u> from neuston tows during cruise 1PO81, May-June 1981. Abundance expressed as numbers per 1,000 m³.

Figure 27.--Results of recurrent group analysis on bongo catches (both fish eggs and larvae) from 1PO81, May-June 1981, at an affinity level of 0.4. Taxa in rectangles are members of recurrent groups. Lines connect taxa with affinities outside their groups. Numbers

in parentheses following taxa names are the numbers of occurrences

.

14

of that taxon.

.

Э

С

Э

С

С

С

Э

Э

С

С

.

NEUSTON STATIONS

BONGO STATIONS

	POSITIO	N	DATE			STANDARD	HAUL FACTORS *		STANDARD	HAUL FACTORS
STATION	LAT.	LONG.	YYMMDD	AREA	TIME	A	В	TIME	A	8
	Ν.	W		KM2	GMT			GMT		
6001A	48 0.0	124 50.5	81 5 9	929.	2039	0.019	12.989	2059	5.078	10.579
6002A	48 1.0	125 13.0	81 5 9	1027.	2325	0.022	14.701	2345	7.931	4.866
G003A	47 59.9	125 35.4	81 510	1171.	235	0.024	15.722	258	6.828	3.772
6004A	48 0.0	125 56.7	81 510	1855.	600	0.032	21.172	620	6.587	3.092
G005A	48 0.0	126 17.4	81 510	1922.	939	0.027	18.186	1005	7.206	3.189
6006A	47 40.0	125 21.1	81 510	1689.	1502	0.030	20.039	1513	7.343	3.221
G007A	47 39.2	124 59.0	81 510	929.	1753	0.030	20.173	1805	7.257	4.507
6008A	47 39.7	124 36.9	81 510	1005.	2025	0.032	21.075	2040	5.880	15.891
G009A	47 19.7	124 26.4	81 510	953.	2300	0.019	12.430	2330	5.624	16.068
6010A	47 19.6	124 49.5	81 511	1123.	154	0.020	13.616	212	6.878	3.229
GOILA	47 28.0	125 10.1	81 511	1654.	440	0.020	13.268	502	7.244	3.177
6012A	47 20.0	126 7.9	81 511	5142.	1154	0.027	17.767	1215	6.246	2.839
GUISA	47 20.0	127 6.0	81 511	4464.	1702	0.019	12.56/	1/15	1.197	3.185
6014H	4/ 19.8	127 40.3	81 511	5007	2320	0.019	12.540	2345	0.007	3.08/
COLLA	40 37./	128 40.0	81 512	5217	17/7	0.018	12.085	823	0.02/	3.231
GO17A	40 37.0	12/ 40.0	01 512	5745	1017	0.017	12 700	1903	7 779	7 700
60184	46 40 1	125 40.2	01 512	4843	75	0.019	12.376	1733	6 307	7 157
60194	47 0.0	125 1 0	91 517	2118	505	0.017	11 070	525	6 997	7 150
6020A	46 59.0	124 40.4	81 513	1020.	845	0.018	11.889	905	7.437	6.951
G021A	47 0.2	124 17.1	81 513	867.	1100	0.020	13.099	1115	8.576	21.989
G022A	46 39.5	124 15.8	81 513	994.	1431	0.019	12.359	1445	7.631	14.398
G023A	46 39.9	124 37.8	81 513	983.	1701	0.019	12.707	1715	7.483	5.543
G024A	46 40.0	124 59.9	81 513	1748.	1957	0.018	12.084	2015	7.824	3.417
G025A	46 20.2	124 54.2	81 513	1885.	2320	0.018	11.805	2330	7.290	3.344
G026A	46 20.0	124 33.4	81 514	931.	305	0.018	12.117	325	7.478	5.459
G027A	46 20.0	124 13.4	81 514	892.	530	0.018	11.704	610	7.533	24.300
6028A	45 59.0	124 8.5	81 514	931.	905	0.019	12.395	955	6.956	8.483
6029A	46 0.0	124 27.5	81 514	908.	1211	0.031	20.880	1230	. 8.749	5.400
6030A	45 59.9	124 48.9	81 514	1/66.	1523	0.018	12.333	1550	1.233	3.333
6031A	46 0.0	125 46.1	81 515	4048.	2345	0.018	10.724	D	6.985	3.190
6032A	40 0.3	120 33./	81 515	4/70.	400	0.021	13.85/	1170	7.510	3.323
60344	45 00.4	120 24.0	01 514	5002	1774	0.021	17 704	1757	4 797	3.070
60354	45 20 1	120 24.0	91 515	5265	2300	0.020	12 107	2355	6 985	3 132
60366	45 20.1	127 38.7	81 516	5376.	520	0.018	11 779	545	6.582	3.047
6037A	45 20.0	126 40.1	81 516	5548.	1137	0.020	13.571	1152	7.515	3.158
G038A	45 20.0	125 44.1	81 516	5285.	1711	0.019	12.997	1730	9.526	4.311
G039A	45 40.1	124 45.6	81 516	1872.	2230	0.019	12.934	2250	9.254	4.168
G040A	45 39.8	124 26.4	81 517	981.	50	0.018	12.290	110	6.422	3.755
G041A	45 39.2	124 5.0	81 417	801.	300	0.018	12.179	320	7.276	9.449
G042A	45 19.3	124 8.5	81 517	967.	550	0.019	12.921	605	6.553	5.903
G043A	45 20.0	124 29.4	81 517	974.	900	0.019	12.816	920	6.805	3.136
6044A	45 20.9	124 49.2	81 517	1893.	1319	0.020	13.136	1410	6.460	2.821
6045A	45 0.1	124 50.4	81 517	2010.	1825	0.017	11.338	1839	4.191	1.931
6048A	45 0.0	124 29.0	81 517	1028.	2045	0.019	12.833	2140	1.300	3.228
6047A	45 0.2	124 7.5	81 517	775.	2345	0.020	13.582	10	6.431	8.351
60404	44 40.0	124 11.1	01 510	8/3.	400	0.018	12.28/	415	6.303	4 100
60504	44 40 0	124 52.7	01 510	1005.	010	0.020	10.402	025	4 977	7 770
60514	44 40 1	125 49 8	01 510	5104	1402	0.019	11 070	1618	6 981	3.330
60524	44 39.8	126 44.2	81 518	5292	2220	0.018	12 578	2150	7.399	3 303
6053A	44 40.4	127 36.9	81 520	5351.	815	0.019	12.543	900	7.154	3,194
G054A	44 40.0	128 29.9	81 520	4996.	1435	0.020	13.268	1456	7.454	3.358
6055A	44 0.2	128 26.0	81 520	5268.	2010	0.019	12.338	2030	7.708	3.488
G056A	43 59.9	127 33.2	81 521	4909-	127	0.018	12.162	145	7.898	3.464
6057A	44 0.0	126 45.2	81 521	5064	625	0.017	11,272	640	7.623	3.481
6058A	44 0.0	125 50.1	81 521	5064.	1200	0.018	11.895	1215	7.538	3.396
6059A	44 19.9	124 55.2	81 521	2013.	1727	0.017	11.531	1753	8.098	3.521
G060A	44 19.4	124 34.1	81 521	993.	2015	0.017	11.034	2030	6.761	7.596
G061A	44 20.0	124 13.5	81 521	877.	2245	0.017	11.473	2300	6.682	12.149
G062A	43 59.7	124 15.1	81 522	831.	145	0.017	11.604	200	10.452	12.296
G063A	44 0.0	124 36.2	81 522	1013.	415	0.019	12.632	430	7.035	4.481

Table 1.--Data associated with bongo and neuston tows during cruise 1PO81, May-June 1981.

66444	47 59 9	124	57 0	Q 1	522	1775	740	0.014	10.00	•	755	7 6 7 7	7 / 50			
60456	43 40 0	125	1.4	- Q 1	522	1945	1140	0.010	11.41		1000	1.3/3	3.400			
BOAAA	47 40 0	120	61 2	01	522	1000	1/170	0.017	11.01	7	1475	4 607	3.300			
60474	43 40 0	124	21 5	81	522	947	141/	0.017	11.17	4	1450	0.307	0 700			
66494	47 19 D	124	29.9	91	522	995	1071	0.017	11.07		1032	7 070	0.707			
60494	43 19.4	124	51.1	81	522	1070	2731	0.010	10.75	5	2030	7 610	7.700			
60204	43 20 0	125	10.9	81	522	2002	2010	0.017	12.33		2330	7.012	3.273			
B071A	43 20.0	120	2017	01	523	2002.	4757	0.017	12.73		430	7.217	3.404			
6072A	43 20.0	120	2.9	81	523	52/5.	1357	0.019	12.34	3	1413	8.032	3.492			
00728	43 20.0	120	3/.7	81	523	5311.	1935	0.020	13.17	2	1955	7.481	3.400			
00734	43 20.0	12/	49.0	01	324	3433.	130	0.019	12.54.	5	150	1.191	3.450			
00748	43 19.6	128	40.4	81	524	5851.	715	0.018	12.01	0	735	7.692	3.561			
00758	42 40.2	128	48.0	81	524	5847.	1255	0.018	12.290]	1315	6.715	3.276			
0076R	42 40 U	127	53.9	81	524	5720.	1827	0.020	13.53	3	1840	7.293	3.361			
6077A	42 40.0	127	0.0	81	525	5761.	. 45	0.020	13.53	3	20	7.134	3.365			
GU78A	42 40.1	126	6.1	81	525	5433.	540	0.026	17.14:	2	610	7.267	3.412			
G079A	43 0.0	125	14.3	81	525	1911.	1126	0.020	13.55	5	1150	7.146	3,452			
G080A	43 0.4	124	55.1	81	525	1012.	1408	0.020	13.013	2.	1431	7.782	3.384			
G081A	42 59.9	124	33.9	81	525	698.	1658	0.016	10.974	5	1720	7.024	7.472			
G082A	42 40.3	124	34.9	81	525	824.	2100	0.017	11.663	2	2115	6.489	6.555			
G083A	42 39.8	124	55.2	81	526	1065.	1141	0.018	12.315	5	1203	6.326	2,775			
GO84A	42 40.0	125	16.5	81	526	2041.	1553	0.018	12.222	2	1613	6.733	3.019			
G085A	42 19.8	125	11.9	81	526	1981.	1900	0.021	14.022	2	1920	7.236	3.066			
G096A	42 20.0	124	52.1	81	526	1001.	2150	0.020	13.18	í	2205	7.246	3.007			
G087A	42 20.5	124	32.5	81	527	876.	35	0.022	14.85	5	50	5.522	5.259			
G088A	41 59.9	124	24.0	81	527	818.	340	0.020	13.050	5	425	5.846	7.794			
G089A	41 59.9	124	43.1	81	527	995.	715	0.020	13.36		725	7.298	3.044			
G090A	41 59.8	125	4.4	81	527	1893.	1010	0.019	12.92	2	1030	5 479	2.504			
G071A	42 0.5	125	53.3	81	527	5064.	1503	0.019	12 41	5	1547	6.125	2 7 7 7 7			
60924	41 58.5	124	47.6	81	527	5401	2100	0.010	10 405	5	2120	7 170	7 9/5			
60934	41 59.9	127	41.4	81	528	5549	210	0.021	12.02	-	270	7 676	7 700			•
60944	41 59 9	128	37.5	Řî	528	5559	250	0.021	14.00	2	230	7 504	7 754			
60954	41 20 1	178	24.0	91	528	5707	1 700	0.029	10.10		1720	7 1 7 7	7 751			
60964	41 19.9	127	30.1	81	528	5490	1974	0.017	14.01.	2	1920	7 777	2 750			
60976	41 20.0	124	39.4	- A1	528	5251	2335	0.017	11.41.	2	1040	7 750	3.300			
GNORA	41 20 0	125	40 1	91	520	5215	2000	0.017	12.000		2330	/ 01/	3.1/2			
60996	41 40 0	124	57 1	91	520	1950	1015	0.017	12.34/		510	7 225	3.272			
61004	41 40.0	174	74 8	81	520	1075	1202	0.017	11.70		1030	1.440	3.343			
01004	41 40.0	10/	1/ 0	01	527	777	1815	0.017	11.023	1	1320	0.013	1/ 000			
6101A	41 40.0	124	10.0	01	547	//3.	1010	0.017	11.45	2	1530	/ 144	14.289			
0102A	41 20.2	124	77 0	01	527	701.	1010	0.017	12.464	t .	1825	0.8/0	0.740			
01034	41 20.0	124	37.0	01	527	1041.	4000	0.017	11.312	2	2110	0.0/4	3.288			
01044	41 20.0	124	5/.3	81	530	1882.	205	0.018	11.717		220	8.313	3.53/			
0103H	41 0.2	124	33.2	01	530	1823.	303	0.019	12.87		523	7.482	3.300			
01008	41 0.0	129	33.3	01	530	1008.	/55	0.019	12.818	5 .	815	7.231	3.200			
01078	40 39.6	124	15.9	81	230	/65.	1035	0.019	12.481		1050	6.292	9.391			
01004	40 41.0	124	28.0	81	530	900.	1313	0.017	11.39	5	1355	6.689	10,965			
0107H	40 40.0	124	44.3	01	330	1101.	1617	0.019	12.35		2130	1.464	3.259			
011UA	40 40.0	125	6.5	81	531	2130.	20	0.019	12.663	3	30	6.825	3.020			
01114	40 40.0	125	52.1	91	531	5042.	515	0.023	15.197	,	540	6.695	3.043			
6112A	40 40.0	126	44.7	81	531	5445.	1107	0.022	14.823	5	1130	6.620	2.942			
G113A	40 40.0	127	36.4	81	531	5369.	1647	0.019	12.997	7	1707	5.712	2.856			
G114A	40 39.9	128	29.3	81	531	5495.	2310	0.019	12.660)	2322	6.376	2.980			
6115A	40 0.0	129	2.9	81	61	6550.	515	0.022	14.462	2	533	7.471	3.277			
G116A	40 0.0	128	11.1	81	6 i	5568.	1110	0.019	12.429	? ?	1120	6.336	3.076			
G117A	40 0 .0	127	20.9	81	61	5517.	1623	0.021	13.854	,	1638	7.049	3.204			
6118A	40 0.0	126	30.1	81	61	5592.	2150	0.017	11.322	2	2208	6.798	3.162			
G119A	40 0.0	125	39.0	81	62	4455.	255	0.019	12.501	L	305	6.816	3.127			
G120A	40 20.0	125	6.9	81	52	1812.	715	0.017	11.417	,	730	6.891	3.251			
G121A	40 19.1	124	47.7	81	62	1061.	1005	0.018	11.983	5	1020	6.883	3.186			
G122A	40 20.0	124	28.2	81	62	1002.	1241	0.017	11.454	i .	1300	7.428	5.087			
G123A	39 59.5	124	10.9	91	62	809.	1615	0.018	11.937	,						
	-			-		• •		?			-		_			3
*"A"	Conver	ts	cate	:h	to	catch	per	10 m~.	"B"	converts	catch	to	catch	per	1000	ຫ້
						+			_							. —

Table 1 (Continued)

POSITION STATION LAT. LONG. N. W.

DATE YYMMDO

AREA KM2 16

NEUSTON STATIONS

A

TIME GMT STANDARD HAUL FACTORS*

В

BONGO STATIONS

TIME GMT STANDARD HAUL FACTORS

ί

(

(

(

1

STAGE: EGG

0

0

0

		GEAR: 1	NEUSTON	GEAR: 2	BONGO
		OCCUR.	LOG NO.	LOG NO.	MEAN NO.
		%	IN AREA	IN AREA	PER 10M2
SPECIES					
UNIDENTIFIED		5.69	7.6330	10.7316	9.07
TELEOST TYPE C				9.9087	7.54
TELEOST TYPE G				10.2106	30.83
DISINTEGRATED		1.63	7.2273	8.7289	5.62
ENGRAULIS MORDAX		0.81	7.3143		
ARGENTINIDAE				9.6131	10.04
NANSENIA CANDIDA				10.4671	9.78
BATHYLAGIDAE				11.3488	12.06
BATHYLAGUS SP.				10.7491	8.89
BATHYLAGUS OCHOTENSIS				9.8940	7.35
CHAULIODUS MACOUNI		4.88	7.6901	11.1292	9.03
MYCTOPHIDAE				12.5599	92.54
THERAGRA CHALCOGRAMMA				8.9600	9.67
COLOLABIS SAIRA		2.44	7.4891		
TRACHIPTERUS ALTIVELIS		39.84	9.0504	10.9462	8.65
SEBASTOLOBUS SP.		4.07	10,2139		
ICOSTEUS AENIGMATICUS		4.07	7.6518	10.4275	8.06
ICICHTHYS LOCKINGTONI		35.77	9.5293	10.7156	8.78
TETRAGONURUS CUVIERI				9.5870	7.36
BOTHIDAE		25.20	9.4683	11.5973	76.62
CITHARICHTHYS SP.		2.44	6.6974	10.3029	13.22
PLEURONECTIDAE		2.44	6.7390	11.0773	52.00
GLYPTOCEPHALUS ZACHTRUS		6.50	8,1193	10.7063	13.92
ISOPSETTA ISOLEPIS		0.81	6.2654	9,1225	7.90
LYOPSETTA EXILIS		6.50	7,5506	11.4497	37.07
MICROSTOMUS PACIFICUS		21.14	8.8655	10.6106	12.00
PLEURONICHTHYS DECURRENS		0.81	6.2803	8.6736	5,08
PSETTICHTHYS MELANOSTICTUS	3	1.63	6.8184	8.8274	7.53

Table 2.--Fish eggs collected in bongo and neuston tows during cruise 1P081, May-June 1981.

	GEAR: 1 OCCUR.	NEUSTON Log no.	GEAR: 2 Log No.	BONGO Mean No.
SPECIES	7.	IN AREA	IN AREA	PER 10M2
UNIDENTIFIED			9,1689	7.08
DISINTEGRATED	4.07	8.0808	11 5295	19 19
CLUPEA HARENGUS PALLASI	2.44	7.1508	8.7654	7.28
OSMERIDAE	0.81	6.7969	9.5866	10.10
NANSENIA CANDIDA			10.4346	8.24
BATHYLAGIDAE			9.9640	8.46
BATHYLAGUS SP.			10.0159	21.63
BATHYLAGUS MILLERI DATHYLAGUS AGUATENOVO	6 1 7 1 7		9.4823	6.82
DATHYLAGUS VCHQ(ENSIS	0.81	7.0029	11.6395	15.37
VBCABVBC1 CVIC 50 541U1CMOD2 LHCILICO2			10.7302	8.06
CHAIN TANNS MACAUNT			9.0763 10 7707	/.2/
SCOPELOSAHRUS SP.			0 5070	0-60 7 74
MYCTOPHIDAE			10 3091	7.30
DIAPHUS THETA			12.3638	44.00
LAMPANYCTUS SP.		<u>.</u>	11 2428	15.40
LAMPANYCTUS REGALIS			10.7500	11.12
LAMPANYCTUS RITTERI			10.9483	10.90
STENOBRACHIUS SP.			9.5707	22.03
STENOBRACHIUS LEUCOPSARUS	2.44	7.3356	12.8612	98.61
TARLETONBEANIA CRENULARIS			11.4545	17.02
PROTOMYCTOPHUM CROCKERI			11.3947	13.15
FROIOMYCTOFHUM THOMFSONI			10.2599	8.61
CADIDAE RINGENS			10.2984	8.68
MICROCADUC POAVIMUC			9.0300	11.25
11100000000 FRUXINUS			9./340	10.62
COLOLARIS SATEA	10 70	0 4450	9.6285	6.80
TRACHTPTERUS ALTTUELTS	10°\n	8.0000	0 0000	. 0 70
MELAMPHAETDAE			10 202	7 00
SCORPAENIDAE			10.5580	10.58
SEBASTES SP.	13.01	8.3107	11.6873	32.19
SEBASTOLOBUS SP.	0.81	6.8026	10.3736	8.16
ANOPLOPOMA FIMBRIA	8.94	8.0807		
OPHIODON ELONGATUS	0.81	6,2044		
COTTIDAE	0.81	6.0606	9.2545	9.37
ARTEDIUS HARRINGTONI			9.7575	9.39
ARIEDIUS MEANYI			8.7715	5.88
RADULINUS ASPRELLUS CORDACHICHTUNG MADMADATUG		~ ~ ~ ~ ~ ~ ~ ~	9.3081	7.27
ACONTRAC	8.94	8.28//		
CYCLADIEDINAC			9.4102	/.06
BATHYMASTER SP	0.01	え つちつえ	10.2/3/	9.25
RONQUITEUS	0.01	0.2070 7 7920	0 77/4	11 /0
STICHAEIDAE	() - T ()	/ # / # 0 /	7 #7240 8 8578	7 07
POROCLINUS ROTHROCKI			8,9600	9.47
AMMODYTES HEXAPTERUS	1.63	6.8406	9.0947	6.67
ICICHTHYS LOCKINGTONI			9.5710	7.45
CITHARICHTHYS SP.			8.7715	5 88
CITHARICHTHYS SORDIDUS			10.6162	9.52
CITHARICHTHYS STIGMAEUS	0.81	6.5175		
GLYPTOCEPHALUS ZACHIRUS			10.2895	9.31
HIPPOGLOSSOIDES ELASSODON			9 1479	7.29
ISOPSETTA ISOLEPIS			9.7953	8.27
LIVESELLA EXILIS			11.1549	15.83
HIUROSIOMUS PACIFICUS	1.63	6.7734	10.5152	9.43
FLATICHTHYS STELLATUS	0.81	6.1948		
THEORVRIGHTHID DEUKKEND Deettieutuve Melanastietue	0.81	6.5119		
FƏLITICHINIƏ MELANVƏTICIUS	100 A. 100 A.		Y.7638	7.83

Table 3.--Fish larvae collected in bongo and neuston tows during cruise 1P081, May-June 1981.

ť

 \bigcirc

О

 \bigcirc

С

 \supset

 \bigcirc

С

 \bigcirc

С

Figure 1.--Station locations for cruise 1PO81, May-June 1981.

С

ICHTHYOPLANKTON RANK ABUNDANCE

Figure

ω

-Rank ab 1PO81,

abundance

of

of larvae 1981.

caught

in

neuston

tows

during

cruis

D

May-June

Figure P -Rank abun May-June abundance June 1981. сf, eggs caught ļ bongo tows during cruise 1P081,

CRUISE: 19081 GEAR: BONGO STAGE: EGG

SPECIES	NUMBER CAUGHT	*10' 50.00	80.00 1	00.00	SPECIES	PERCENT OCCURRENCE 20-00 40-00 60-00 80-00 100
STENDRRACHING LENCORCADUS			7454	1		
ALAPHIC THETA	· · · · · · · · · · · · · · · · · · ·				STERUBRACHIUS CEUCUTSARUS	h
CEDACTES CD					BAIRTLAGUS OCHUTENSIS	
36043163 3F. 847491 4030 Acustowere	J				LTUPSETTA EXILIS	<u>⊨</u>
LYOPEETTA ENTLIG					SEBASIES SF.	
DIGINITEORATED	<u>⊨</u>				DIAPHUS THETA	<u>├</u>
DISINIEGRAIEU					TARLETUNBEANTA CRENULARIS	<u>}</u>
TARLETUNBEANTA CRENULARIS	F=-∓- ^J				DISINIEGRAIED	►
FROTUNICIUFMUM CRUCKERI	l f−r ²				PRUTUNTCTUPHUN CROCKERT	
LARPANTCIUS SP.	}_				CYCLOPIERIDAE	
CTCLOPIERIDAE	H				LAMPANYCTUS SP.	
LAMPANYCIUS RITTERI	H				BATHYLAGUS PACIFICUS	↓
BATHYLAGUS PACIFICUS	Н		•		CHAULIODUS MACOUNI	
LAMPANYCTUS REGALIS	Н				LAMPANYCTUS RITTERI	┝╾┯┙
MICROSTOMUS PACIFICUS	H				HICROSTOMUS PACIFICUS	h
CHAULIODUS MACOUNI					LAMPANYCIUS REGALIS	
CITHARICHTHYS SORDIDUS					CITHARICHTHYS SORDIDUS	
GLYPTOCEPHALUS ZACHIRUS	ű.				SEBASTOLOBUS SP.	F-4
MYCTOPHIDAE	¥				NANSENIA CANDIDA	
ISOPSETTA ISOLEPIS	l l			•	ISOPSETTA ISOLEPIS	Ц
SEBASTOLOBUS SP.	l l				GLYPTOCEPHALUS ZACHIRUS	
NANSENIA CANDIDA					PSETTICHTHYS MELANOSTICTUS	
SCORPAENIDAE					PROTOMYCTOPHUM THOMPSON1	
PSETTICHTHYS MELANOSTICTUS					ARTEDIUS HARRINGTONI	
RONQUILUS JORDAN1	1				SCORPAENIDAE	
ARTEDIUS HARRINGTONI	<u>}</u>				MELAMPHAEIDAE	
PROTOMYCTOPHUM THOMPSONI	ß				MICROGADUS PROXIMUS	
MICROGADUS PROXIMUS					OSMERIDAE	Π
OSHERIDAE					1 ESTIDIOPS BINGENS	Π
MELAMPHAEIDAE					AGONTDAE	[]
LESTIDIOPS RINGENS					RONOLITI US JORDANT	F1
AGONTDAE	ſ				PADID THUS ASPRELLIS	Π
RADIU INUS ASPRELLUS					MYCTOPHIDAE	Ħ
COLLIDAE						П
BATHYLAGUS SP.					UNTRENTIETER	H I I I I I I I I I I I I I I I I I I I
STENDBRACHTUS SP.	·				COTTIDAE	М
GADIDAF					MTRAACI ACCOTACS ELACCADAN	
BATHYI ACIDAE					TOACHIDESUG ALTIVELLE	Н
UNIGENTIEIEG	1				ODOCMODUYCIS MARCINATA	М
					ACTEDINE MEANYT	ſ
TRACHEDTERING IN TIVELLO						
PROCEMORIZATE MARCINATA					ADOVDOBELECUS OF	1
ADTENTIC MELONI					ATTUADIOUTUYE CD	
AR + EDING - HEARING - ED	1				LITARICHIMIS SF.	
SUUFELUSAURUS SP.	1				ILICHINIS LUCKINGIUNI	1
ARGINGTELEGUS SP.					ANNULTIES REAATIENUS	
CLIMARICHINTS SP.					PURUCLINUS KUTHKUCKI	
ICIGHINIS LOCKINGTONI					STICHAEIDAE	· ·
AMMUDYTES HEXAPTERUS					HATHYLAGUS SP.	N
PORUCLINUS ROTHROCKI					CLUPEA HARENGUS PALLASI	ł
STICHAEIDAE	1				BATHYLAGUS MILLERI	K
CLUPEA HARENGUS PALLASI					GADIDAE	K
AATHYLAGUS MILLERI					STENOBRACHIUS SP.	14

ICHTHYOPLANKTON RANK ABUNDANCE

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

Figure 5.--Rank abundance of larvae caught in bongo tows during cruise 1P081, May-June 1981.

 \bigcirc

 \bigcirc

 \cup

 \bigcirc

 \bigcirc

23

 \cup

ICHTHYOPLANKTON RANK ABUNDANCE

CRUISE: 1P081 GEAR: BONGO ST

STAGE: LARVAE

~ ~

.

SPECIES	MEAN NUM	BER PER 10M2	80.00	100.00	SPECIES	L0G s200	OF NUMBER IN	SURVEY AREA	15.00
STENDBRACHIUS LEUCOPSARUS		······			STENOBRACHIUS LEUCOPSARUS				
DIAPHUS THETA					DIAPHUS THETA				
SEBASTES SP-					SEBASTES SP.				
MYCTOPHIDAE]			BATHYLAGUS OCHOTENSIS	L]	
STENOBRACHIUS SP.					DISINTEGRATED				
BATHYLAGUS SP.					TARLETONBEANIA CRENULARIS				
DISINTEGRATED					PROTOMYCTOPHUM CROCKERI				
TARLETONBEANIA CRENULARIS					LAMPANYCTUS SP.	Ē			
LYOPSETTA EXILIS					LYOPSETTA EXILIS		• • •		
LAMPANYCTUS SP-					LAMPANYCTUS RITTERI				
BATHYLAGUS OCHDTENSIS					LAMPANYCTUS REGALIS				
PROTOMYCTOPHUM CROCKERI					CHAULIODUS MACOUNI				
RONDUILUS JORDANI					BATHYLAGUS PACIFICUS				
GADIDAE					CITHARICHTHYS SORDIDUS				
LAMPANYCTUS RITTERI					CYCLOPTERIDAE				
LAMPANYCTUS REGALIS					SCORPAENIDAE				
MICROGADUS PROXIMUS					MICROSTOMUS PACIFICUS				
SCORPAENIDAE					NANSENIA CANDIDA				
ÓSMERIDAE					SEBASTOLOBUS SP.				
PORDCLINUS ROTHROCK1					MYCTOPHIDAE				
CITHARICHTHYS SORDIDUS					LESTIDIOPS RINGENS				
MICROSTOMUS PACIFICUS					GLYPTOCEPHALUS ZACHIRUS				
ARTEDIUS HARRINGTON1					PROTOMYCTOPHUM THOMPSONI				
COTTIDAE					MELAMPHAEIDAE				
GLYPTOCEPHALUS ZACHIRUS					BATHYLAGUS SP.			J	
CYCLOPTERIDAE					BATHYLAGIDAE				
LESTIDIOPS RINGENS					TRACHIPTERUS ALTIVELIS				
CHAULIODUS MACOUNI					ISOPSETTA ISOLEPIS				
PROTOMYCTOPHUM THOMPSON]					PSETTICHTHYS MELANOSTICTUS				
BATHYLAGIDAE					ARTEDIUS HARRINGTONI	<u> </u>			
TRACHIPTERUS ALTIVELIS					MICROGADUS PROXIMUS				
ISOPSETTA ISOLEPIS					RONQUILUS JORDANI		d		
NANSENIA CANDIDA					BROSMOPHYCIS MARGINATA				
SEBASTOLOBUS SP.					ARGYROPELECUS SP.				
BATHYLAGUS PACIFICUS					SCOPELOSAURUS SP.				
PSETTICHTHYS MELANOSTICTUS	h				OSMERIDAE				
ICICHTHYS LOCKINGTONI					ICICHTHYS LOCKINGTONI				
SCOPELDSAURUS SP.					STENDBRACHIUS SP.				
HIPPOGLOSSOIDES ELASSODON	k				BATHYLAGUS MILLERI				
CLUPEA HARENGUS PALLASI	H				AGONIDAE				
RADULINUS ASPRELLUS	H				RADULINUS ASPRELLUS				
ARGYROPELECUS SP.	H				COTTIDAE		r_/		
UNIDENTIFIED	н				UNIDENTIFIED				
AGONIDAE					HIPPOGLOSSDIDES ELASSDOON				
STICHAEIDAE	Н				AMMODYTES REXAPTERUS		i		
MELAMPHAEIDAE	Н						r		
BATHTLAGUS MILLERI	Н				PURUCLINUS KUTHKUCKI		/		
BRUSHUPHYCIS MARGINATA	H				STICHALIDAE				
AMMUDITES HEXAPTERUS	Fri				ADTEDING MEANYI				
DICHARICHIMIS SP-	Н				ARTGULUS (GARTL CLUDEA HADENCUS PALLAST				
ARTEUTUS DEANTI					CENTER HARENOUS FREEKSI	L			

~

~~

24

~

....

 $\widehat{}$

С

Figure 6.--Distribution of eggs of Bathylagidae from bongo tows during cruise 19081, May-June 1981. Abundance expressed as numbers per 10 m².

С

ί

(

ť

ţ

ş

ł

Figure 7.--Distribution and lengths of <u>Bathylagus</u> <u>ochotensis</u> from bongo tows during cruise 1P081, May-June 1981. Abundance expressed as numbers per 10 m².

С

 \bigcirc

Figure 9.--Distribution and lengths of <u>Diaphus theta</u> from bongo tows during cruise 1P081, May-June 1981. Abundance expressed as numbers per 10 m².

į,

í

d

С

С

С

 \supset

С

С

С

С

С

С

Figure 10.--Distribution and lengths of <u>Stenobrachius</u> <u>leucopsarus</u> from neuston tows during cruise <u>lP081</u>, May-June <u>1981</u>. Abundance expressed as numbers per 1,000 m³.

Figure 11.--Distribution and lengths of <u>Stenobrachius leucopsarus</u> from bongo tows during cruise 1P081, May-June 1981. Abundance expressed as numbers per 10 m².

÷

С

 \bigcirc

С

 \bigcirc

 \bigcirc

 \bigcirc

С

 \bigcirc

С

C

Ó

Figure 12.--Distribution and lengths of <u>Cololabis saira</u> from neuston tows during cruise 1P081, May-June 1981. Abundance expressed as numbers per 1,000 m³.

:

ţ

Figure 13.--Distribution of eggs of <u>Trachipterus</u> <u>altivelis</u> from neuston tows during cruise 1P081, May-June 1981. Abundance expressed as numbers per 1,000 m³.

 \odot

Э

С

 \bigcirc

С

С

 \bigcirc

С

С

С

Figure 14.--Distribution and lengths of <u>Sebastes</u> sp. from neuston tows during cruise 1P081, May-June 1981. Abundance expressed as numbers per 1,000 m³.

Figure 15.--Distribution and lengths of <u>Sebastes</u> sp. from bongo tows during cruise 1P081, May-June 1981. Abundance expressed as numbers per 10 m².

ζ.

(

Ċ

С

 \bigcirc

Figure 16.--Distribution of eggs of <u>Sebastolobus</u> sp. from neuston tows during cruise 1P081, May-June 1981. Abundance expressed as numbers per 1,000 m³.

.

(

(

ţ

ί

4

(

\$

Figure 17.--Distribution and lengths of <u>Anoplopoma fimbria</u> from neuston tows during cruise 1PO81, May-June 1981. Abundance expressed as numbers per 1,000 m³.

С

С

Figure 18.--Distribution and lengths of <u>Scorpaenichthys marmoratus</u> from neuston tows during cruise 1P081, May-June 1981. Abundance expressed as numbers per 1,000 m³.

129 00W 127 00W 125 OOW 123 00W 48 00N +18 48 OON + 50 +18 47 00N 47 OON +74 +24 +78 +87 +272 46 OON +12 +13 +11 46 OON +14 +195 45 00N +23 45 00N +36 +25 44 00N +124 44 OON +360 +13 + +12 153 +12 +49 43 OON +95+351 43 00N +12 +37 +160 +14 42 00N +13 42 OON + +117+183 115 + +249 1254 +25 41 00N 41 00N + +30 +13 +99 +12 40 00N +75 +23 40 00N Icichthys lockingtoni eggs Neuston May-June 1981 n = 1364 39 OON 39 OON 129 OOW 127 OOW 125 00W 123 OOW

Figure 19.--Distribution of eggs of <u>Icichthys lockingtoni</u> from neuston tows during cruise IPO81, May-June 1981. Abundance expressed as numbers per 1,000 m³.

· ·

38

(

39 (

Figure 20.--Distribution of eggs of Bothidae from neuston tows during cruise 1PO81, May-June 1981. Abundance expressed as numbers per 1,000 m³.

С

 \bigcirc

 \bigcirc

 \bigcirc

0

 \supset

 \bigcirc

С

 \bigcirc

 \bigcirc

 \bigcirc

Figure 21.--Distribution of eggs of Bothidae from bongo tows during cruise 1PO81, May-June 1981. Abundance expressed as numbers per 10 m². С

 \bigcirc

 \bigcirc

С

С

С

С

 \bigcirc

С

С

Figure 22.--Distribution of eggs of Pleuronectidae from bongo tows during cruise 1PO81, May-June 1981. Abundance expressed as numbers per 10 m².

С

Figure 23.--Distribution of eggs of <u>Glyptocephalus</u> zachirus from bongo tows during cruise 1PO81, May-June 1981. Abundance expressed as numbers per 10 m².

i

(

С

С

 \bigcirc

С

С

Э

Э

 \bigcirc

С

Figure 24.--Distribution of eggs of Lyopsetta exilis from bongo tows during cruise 1PO81, May-June 1981. Abundance expressed as numbers per 10 m².

С

С

Figure 25.--Distribution and lengths of Lyopsetta exilis from bongo tows during cruise 1PO81, May-June 1981. Abundance expressed as numbers per 10 m².

0

Figure 26.--Distribution of eggs of <u>Microstomus</u> <u>pacificus</u> from neuston tows during cruise 1P081, May-June 1981. Abundance expressed as numbers per 1,000 m³.

Figure 27.--Results of recurrent group analysis on bongo catches (both fish eggs and larvae) from 1P081, May-June 1981, at an affinity level of 0.4. Taxa in rectangles are members of recurrent groups. Lines connect taxa with affinities outside their groups. Numbers in parentheses following taxa names are the numbers of occurrences of that taxon.